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Realistic testing of chemical and biological defense systems requires an actual warfare agent. But
use of such an agent is restricted to laboratory containment chambers, which are not realistic.
This state of affairs has driven the chemical and biological defense community fo integrate
developmental testing and operational testing. Systems are challenged with both agent and
simulant in laboratory containment chambers during developmental testing. A simulant is a
substance that resembles the agent from the perspective of the system under test. A three-step
procedure is described in this article to relate performance when challenged with simulant
during operational festing to performance when challenged with agent. The procedure is based
on classical logistic regression and judgment. If there is no statistical difference in performance
between the agent and the simulant, then the results of the field test with the simulant can be
used to predict agent performance. If there is statistical difference in performance between the
agent and the simulant, but that difference is small and the system under test performs better
when challenged with the agent than with the simulant, then the simulant performance is a
lower bound to agent performance. What is defined as small difference is a matter of judgment.
A graphical method is provided to provide insight as to the magnitude of the difference. In all
other cases, the logistic regression can be used to predict performance based on operational test

challenge concentrations and other parameters from the operational fest.

Key words: ALO; chemical and biological defense systems; detector; evaluation; logistic

regression; simulant.

n Operational Test (OT) is intended
to be a realistic representation of how
the system under test will be used by
its intended operators in the intended
operating environment. An OT in-
cludes actual warfighters executing combat missions
and using the system under test in the same manner
that they would use it in combat. Realistic testing of
chemical and biological defense systems requires the
use of an actual warfare agent. However, because of
treaties, public laws, and a desire not to harm test
participants, testers, the general public, or the envi-
ronment, neither chemical warfare agents nor biolog-
ical warfare agents are released during operational tests
or any field test. Testing with an actual warfare agent is
restricted to the laboratory in containment chambers.

Unfortunately, these containment chambers are not
realistic environments. This state of affairs has driven
the chemical and biological defense community to
integrate agent chamber Developmental Testing (DT)
with OT (Holman and Berkowitz 2009).

There are three methods by which the chemical and
biological test and evaluation community combines or
integrates the realism of actual biological or chemical agent
chamber testing with the realism of actual warfighters
executing missions in combat like environments. These
three methods are (a) conducting DT with systems before
and after OT, (b) modeling and simulation, and (c)
developing agent—simulant relationships (Holman and
Berkowitz 2009). A simulant is a relatively harmless
substance that has some of the properties of agents and can
be released into the environment.
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Conducting agent DT with systems before and after
OT can provide keen insight into determining whether
using a system in the operational environment will
degrade its performance. This type of testing has been
used most extensively with protective garments. New
Joint Service Lightweight Integrated Suit Technology
(JSLIST) protective garments and JSLIST garments that
went through 15, 30, 45, and 60 days of OT wear were
tested in DT. The DT included swatch tests with liquid
and vapor chemical warfare agent and whole system tests
with simulant. As a result of this testing, curves were
developed that predicted degradation in protection based
on the amount of wear (Musgrave et al. 1997).

Modeling and simulation were used to integrate
developmental agent chamber tests with simulant OT's
for the Joint Service Lightweight Standoft Chemical
Agent Detector (JSLSCAD). The JSLSCAD perfor-
mance was modeled with a hierarchy of three models:
(a) a vapor cloud model, (b) a scanning model, and (c)
the JSLSCAD model. During the validation and
verification process, the model accurately predicted
performance of the JSLSCAD when challenged with
simulant in open air field tests. The modeling and
simulation effort was the backbone of the JSLSCAD
performance evaluation (Holman et al. 2007).

Modeling and simulation was also used to evaluate the
Joint Biological Standoft Detector System (JBSDS). In
this effort, field measurements of the cross-sectional
infrared back scatter, ultraviolet backscatter, and ultra-
violet florescence of simulant were replaced with
laboratory measurements for actual agent and were
played back in the system software using the other
parameters that were recorded in the system software
during simulant release (Shirakawa et al. 2008).

Early efforts at developing an agent-simulant rela-
tionship were simply to bound a detector’s performance
against an agent with its performance against two
simulants (Musgrave et al. 1997, 2000). Fitch et al.
(2004) recommended developing both better methods to
perform an agent-simulant relationship and better
biological simulants. He proposed using simulants that
are phylogenetically similar to the agents. These Agents
of Like Origin (ALO) include the vaccine strains.

This article describes an approach based on logistic
regression and judgment to develop an agent—simulant
relationship and combine chamber agent test results
with OT results, so that an operationally relevant
evaluation can be made on chemical warfare and
biological warfare agent detectors. This approach was
used and is currently being used to evaluate the Joint
Biological Point Detection System (JBPDS) (Holman
et al. 2008; Moe et al. 2010). Biological warfare agent
LE and its ALO-killed simulant are used as an

example throughout this article.
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Concentration

At some high concentration of an agent, a detector
will always detect that agent. This high concentration
is above the detection threshold, and the probability of
detection is unity. At some low concentration of an
agent, a detector will never detect that agent. This low
concentration is below the detection threshold, and the
probability of detection is zero. As the concentration of
agent increases from a level that is undetectable, the
probability of detection increases. The probability of
detection as a function of concentration tends to be s-
shaped or a sigmoid as depicted in Figure 1. There are
many different sigmoid functions, but the logistic
regression model is especially useful to model detection
performance (Holman and Berkowitz 2009).

Concentration is the independent variable that has
the most pronounced effect on detector performance
(Holman and Berkowitz 2009).

As a general rule of thumb, the sigmoid curve is
steeper (or vertical) in the laboratory than in the field.
This is likely because chamber air when filtered lacks
many of the impurities found in the environment. The
impurities increase the wvariability in the detector
performance. In addition, there is less measurement
error, and hence less variability of response in a
chamber than in the field environment.

Agent-simulant relationship procedure

The procedure described here involves testing the
detector with an agent and a simulant in a chamber at
various concentrations, so that a logistic regression
model can be developed. The procedure then consists
of three steps:

® Step 1: test of hypothesis — Test to see if there is
any statistical difference between the performance
of the detector when challenged with a simulant
or agent in the laboratory. Ensure that sample
sizes are sufficient to adequately control error. If
there is no statistical difference in the perfor-
mance of the detector challenged with agent or
simulant, then use the simulant to predict
detector performance without a transformation.

® Step 2: analysis of the difference — If step 1
demonstrates that detector performance when
challenged with agent is statistically different
from its performance when challenged with
simulant, determine both the directionality and
magnitude of the difference. If detector perfor-
mance for an agent is always better than
performance against a simulant, and if the
difference is judged not to be too great, then
field performance against a simulant can be used
to form a lower bound of performance. If the
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Figure 1. S-shaped or sigmoid curve depicting the relationship between agent detection and agent concentration.

detector performs well enough against this lower
bound, we know that the detector will perform
better against the agent.

® Step 3: For all other cases, use the logistic
regression model to predict performance.

Step 1: test of hypothesis
For the ]JBPDS LE example, the hypothesis is as

follows:

e H,: JBPDS performance is the same with either
killed LE ALO or live LE agent.

® H,: JBPDS performance with killed LE ALO is
different from its performance with live LE
agent.

A classical logistic regression statistical model was
constructed for the probability of detection as a
function of concentration to determine if the JBPDS
detection performance differed between the agent LE
and the killed LE ALO simulant. The random
component is binary 0 or 1 for no detection or
detection (also no identification or identification),
respectively. The explanatory variables for this model
are agent or simulant concentration, and agent or
simulant. The Detection Model is as follows (Allison
1999; Agresti 1996; Hosmer and Lemeshow 1989):

logit(n) =log(n/(1—n)) =0+ 1S+ fx
P(detect|x,S) =" P15+ 1% /(14 215+ F2x),

where m = probability of detection; o = shift

parameter; § = 1 if live agent, O if killed ALO; f; =
agent flag shape parameter; x = concentration; and f3,
= concentration shape parameter.

For this model, hypothesis is now equivalent to

© Ho: ﬂ1=0
] Ha: ﬁ1¢0

The test statistic is the likelihood-ratio test statistic:
—2log(Lo/L1)=—2(Lo—L1), where L is the like-
lihood function without f;, and L; is likelihood
function of the full model. This test statistic is chi-
squared with degrees of freedom equal to the difference
in the number of parameters between the two models.

As can be seen in 7Table 1, JBPDS detection
performance when challenged with a live LE biological
warfare agent is statistically different from its detection
performance when challenged with killed LE ALO
simulant (P value = .0437). Also, as would be expected,
detection performance is a function of concentration
(P value = .0161) (Table 1). The Maximum rescaled
R-squared is 0.8077 for this model. Live LE and killed
LE ALO detection results are based on 62 challenges at
various concentrations. The Hosmer and Lemeshow
goodness-of-fit test chi-square value is 0.3962 with 6
degrees of freedom, which produces a P value of .99.
The deviance goodness-of-fit statistic is 14.50 with
56 degrees of freedom and a P value of .99. Neither
goodness-of-fit test is statistically significant, which
suggests that the model is a reasonable fit.

It is interesting to note, that the difference in
detector performance between the LE agent and killed
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Table 1. LE versus killed LE agents of like origin analysis of
maximum likelihood estimates.

Wald Pr >
Parameter DF  Chi-square  Chi-square
Intercept 1 5.8085 0.0159
Natural log of concentration 1 5.7941 0.0161
Live LE or killed LE ALO
indicator 1 4.0665 0.0437

DF, degrees of freedom; Pr, probability; ALO, agents of like origin.

LE ALO simulant is caused by an inherent difference
in the detection of the LE agent and LE ALO and is
not caused by the killing process. There is no
significant statistical difference in how JBPDS detects
live LE agent or killed LE agent (P value = .4564).
Nor is there any significant statistical difference in how
JBPDS detects live LE ALO or killed LE ALO (P
value = .6447). There is, however, a significant
statistical difference in detector performance between
live LE agent and live LE ALO (P value = .0335).

Since detector performance when challenged with
agent is statistically different from its performance
when challenged with simulant, we proceed to step 2 to
determine both the directionality and magnitude of the
difference. Actually, regardless of the outcome of the
statistical test, step 2 provides insight as to the nature
of the agent-simulant relationship.

Step 2: analysis of the difference

Since the dependent variable is binary, detect or fail
to detect, many of the traditional plots used to provide
insight into linear regression are of minimal benefit.

Keen insight may be provided by creating a function
that is the difference between the predicted probability
of the detecting agent—given concentration and the
predicted probability of the detecting simulant—given
concentration and plotting that function against
concentration. In our LE example, we create the
following function:

LE_DIF = P(Detect LE|Concentration)
— P(Detect Killed LE ALO|Concentration).

Figure 2 depicts a plot of LE_DIF and concentration.
The X axis on this chart has been shifted to create an
unclassified figure.

From this plot the following can be determined:

® The simulant-killed LE ALO accurately predicts
detector performance for LE agent at high and
low concentrations.

® The maximum difference in expected detection
performance between challenges of LE and killed
LE ALO is 0.62.
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® The difference in the probability of detection
between live LE and killed LE ALO

o exceeds 0.60 over a range of 5 Agent Containing
Particles per Liter of Air (ACPLA),
o exceeds 0.20 over a range of 23 ACPLA.

® Detection performance when challenged with
agent LE is greater than when challenged with
LE ALO at the same concentration.

It is not surprising that the simulant-killed LE ALO
accurately predicts detector performance for LE agent
at high and low concentrations. At some low
concentration, the JBPDS can detect neither killed
LE ALO nor LE agent; hence the difference is zero.
At some high concentration, the JBPDS always detects
both the killed LE ALO and LE agent; hence the
difference is zero.

The maximum difference in expected detection
performance between challenges of LE and killed LE
ALO is 0.62. Since the maximum value of a probability
is unity, 0.62 is quite large.

The difference in the probability of detection
between live LE and killed LE ALO that exceeds
0.60 occurs over a concentration range of 5 ACPLA.
The difference in the probability of detection between
live LE and killed LE ALO exceeds 0.20 occurs over
a concentration range of 23 ACPLA. Both of these
concentrations are quite small. A difference of 5
ACPLA is in the noise of measurement error. For
field trials, concentration typically ranges from 1 to
16,000 ACPLA. Hence, the magnitude of the
difference in detection performance is actually quite
small.

The function LE_DIF is formed by subtracting the
expected probability of detection of the killed LE
ALO given concentration from the expected proba-
bility of detection of the live LE agent given
concentration. Since this function is always zero or
positive, it is clear that the JBPDS detects LE agent at
a particular concentration at least as well as it detects
killed LE ALO. Hence, the performance when
challenged with the simulant-killed LE ALO is a
lower bound on what the performance would be if
challenged with actual LE agent. If the system
performs well enough against killed LE ALO, then
we know that it will perform better when challenged
with actual LE agent.

If the difference in performance between the agent
and the simulant is relatively small, and if the system
detects agent better than it detects simulant, then the
simulant performance in the field can be used as a
lower bound of the performance when challenged with
agent.
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Figure 2. Joint Biological Point Detection System detection performance. In this plot, LE_DIF = P(Detect LEIConcentration) —
P(Detect killed LE ALOIConcentration). DIF = difference and ALO = agents of like origin. (Concentration has been shifted and values

left off to create an unclassified figure.)

Step 3: use the logistic regression model
to predict performance

The logistic regression model follows and is described
above. P(detect|x,S)=e*F157F1% /(14 TF15TF2%)
can always be used to predict detector performance
against agent given concentration. Soldier performance
can be incorporated by factoring in releases that would
have been missed as a result of maintenance or soldier
inattention. As a means of validation, the equation can
also be used to predict performance against simulant.
The predicted results against simulant can then be
compared with the actual simulant performance.

There are two limitations with step 3. First, test
results are being estimated by an equation based on
concentration as opposed to being measured. Second,
since field testing is limited to simulant and no agent,
it is being estimated by extrapolation as opposed to
interpolation.

Conclusion

The procedure defined in this article is useful in
predicting biological warfare agent and chemical
warfare agent detector performance against agent in
the operational environment based on testing with
both agent and simulant in the laboratory during
developmental testing and on testing with simulant in
the field during operational testing. This method has
been used to predict the performance of the Joint

Biological Point Detection System and is currently
being used on developmental detectors. |
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